Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT

Grupa ID306, Zespół 5

PRZETWARZANIE OBRAZÓW

Sprawozdanie z ćwiczeń

<u> Ćwiczenie 2</u>

Temat: Korekcja zniekształceń radiometrycznych

Wykonali:

- 1. Olędzki Michał
- 2. Szczygielski Bartosz
- 3. Szumiło Piotr

Warszawa 2006/2007

Zadanie 1

Celem pierwszego z zadań jest przeprowadzenie korekcji radiometrycznej. Posłużymy się przy tym programem kora. Zanim przejdziemy do samej części praktycznej warto nadmienić, że ze zniekształceniami radiometrycznymi mamy do czynienia zazwyczaj wtedy kiedy pojawił się problem nierównomierności oświetlenia czy tzw. błąd detekcji (konwersja oświetlenie – sygnał elektryczny).

Na samym początku wczytujemy do programu przykładową bitmapę spełniającą wszystkie wymagania programu kora, my skorzystaliśmy z pliku cherry.bmp, następnie wczytujemy obraz typu "odniesienia" oraz obraz typu "kora". Przy pomocy przycisku "Perform Correction" dokonujemy korekcji radiometrycznej obrazu wejściowego. Całość prezentuje się następująco:

Widzimy więc jak łatwo skorygowaliśmy ciemniejszą obwódkę wokół wejściowego zdjęcia, w rzeczywistości mogącą być wynikiem np. niedoświetlenia, ewentualnie jakiegoś niepożądanego cienia

itp. Tło na obrazie wynikowym jest już zupełnie czyste i jednolite nie tylko dla ludzkiego oka – przy pomocy "Grid" dowiadujemy się, że "wybielony" fragment obrazku ma poziom jasności rzędu 253-254 czyli nie zawiera praktycznie żadnych szumów. Różnicę pomiędzy jasnością obrazu wejściowego i wynikowego w miejscu niedoświetlenia prezentujemy poniżej:

	Rad	iome	tric C	orrec	tion																			_	a x
Fi	ile Vi	ew (Correc	tion	Help																				
	1 Co 🕼 🙀 🔚 🛛 ? 🛛 🕲 🖕 🖆 😭 😙 😒 🔌 🔍 🔍 🔍 🔍 🔍 🔍																								
	Input File=C:\Program Files\Web Image Secure 2\Output\cherry.bmp																								
Input Image																									
InRmo Histograms Grid															listoara	ame f	ìrid	1					_		
l r	unound 1	1 1115	togran T	13 011									t.		np i n	nstogra T	1	1							
ŀ		100	100	4.07	107	100	100	100	100	100	100		L	<u> </u>	0.54	0.54	054			0.5.4	0.54				
ŀ		186	186	187	187	188	188	188	189	189	190	190	L		254	254	254	254	254	254	254	254	254	253	25:
ŀ		186	186	186	187	187	188	188	188	189	189	190	L		254	254	254	254	254	254	254	254	254	254	253
ł		185	186	186	186	187	187	188	188	188	189	185	L		254	254	254	254	254	254	254	254	254	254	254
ł		185	185	186	186	186	187	187	188	188	188	185	L		254	254	254	254	254	254	254	254	254	254	254
ŀ		185	185	185	186	186	187	187	187	188	188	188	L		254	254	254	254	254	254	254	254	254	254	254
ŀ		184	185	185	185	186	186	187	187	187	188	188	L	<u> </u>	254	254	254	254	254	254	254	254	254	254	254
ŀ		184	184	185	185	185	186	186	187	187	187	188	L		254	254	254	254	254	254	254	254	254	254	252
ŀ		184	184	184	185	185	185	186	186	187	187	187	L		254	254	254	254	254	254	254	254	254	254	254
ŀ		183	184	184	184	185	185	185	186	186	187	187	L		254	254	254	254	254	254	254	254	254	254	254
ŀ		183	183	184	184	184	185	185	185	186	186	187	L		254	254	254	254	254	254	254	254	254	254	254
ŀ		183	183	183	184	184	184	185	185	186	186	186	L		254	254	254	254	254	254	254	254	254	254	254
ŀ		182	183	183	183	184	184	184	185	185	186	186	L	<u> </u>	254	254	254	254	254	254	254	254	254	254	254
ŀ		182	182	183	183	183	184	184	184	185	185	18t	L	<u> </u>	254	254	254	254	254	254	254	254	254	254	254
ŀ		182	182	182	183	183	183	184	184	184	185	185	L	<u> </u>	254	254	254	254	254	254	254	254	254	254	254
ŀ		181	182	182	182	183	183	183	184	184	184	185		<u> </u>	254	254	254	254	254	254	254	254	254	254	254
ŀ		181	181	182	182	182	183	183	183	184	184	184			254	254	254	254	254	254	254	254	254	254	254
ŀ		181	181	181	182	182	182	183	183	183	184	184		<u> </u>	254	254	254	254	254	254	254	254	254	254	254
	•											<u>ک</u>			1										ъĔ
Ľ	<u> </u>												Ι.	_لنـر											

Jak łatwo dostrzec z początkowego odcienia szarego otrzymaliśmy kolor biały.

Zadanie 2

W tym przykładem zajmujemy się tym samym zagadnieniem co zadaniu pierwszym z tym, że sami tworzymy tu obrazy prądu ciemnego oraz jasnego obrazu odniesienia. Wykonaliśmy je przy pomocy podstawowych narzędzi photoshopa pamiętając o wszystkich wymaganiach, które muszą spełnić by współpracować z programem kora. Całość wraz z wygenerowaniem obrazu wynikowego przedstawiamy na obrazku:

Jak widać obrazek kora jest całkowicie czarny z wyjątkiem lewego górnego rogu gdzie występuje niewielkie rozjaśnienie doskonale widoczne też na zdjęciu wynikowym jako lekkie przyciemnienie (np. przysłonięcie obiektywu palcem podczas fotografowania). Na kolejnym utworzonym przez nas obrazku "reference" widzimy trudniejsze już do opisania ze względu na kształt obszary ciemniejsze. Generalnie tylko niewielki fragment tego rysunku pozostaje całkowicie biały. Na wyjściu wszelkie szare motywy powodują rozjaśnienia (im ciemniejszy szary tym silniejsze), Bardzo dobrze widać to w niektórych miejscach przy przybliżeniu co też przedstawiamy poniżej:

Zbliżenie na cień w lewym górnym rogu wywołany rozjaśnieniem na kora_image:

Oraz wartości siatki z tego fragmentu, jak widać obraz z mniej więcej środka skali szarości zmienił się na znacznie ciemniejszy np. przejście ze 136 do 74.

🕕 Ing	Input Image														Nage											
InBmp	InBmp Histograms Grid														OutBmp Histograms Grid											
												L														
	136	138	139	140	139	139	141	142	142	143	145	L		74	75	70	72	69	67	66	64	64	62	61		
	137	138	138	139	139	139	141	142	143	143	145	L		74	73	70	72	69	67	64	64	64	62	61		
	138	138	138	139	139	140	142	142	143	144	146	L		70	70	67	69	67	63	62	62	62	61	60		
	137	138	138	139	140	142	142	143	144	145	147	L		72	72	68	71	67	65	64	64	63	62	61		
	137	138	139	140	141	143	144	144	144	145	147	L		68	68	67	67	65	63	62	62	61	61	59		
	137	138	139	141	142	143	144	144	145	145	148	L		66	66	63	65	63	62	61	61	61	58	58		
	138	139	139	141	142	144	145	145	145	146	148	L		65	66	62	64	62	61	61	61	60	58	58		
	138	139	140	141	143	144	145	145	146	147	149	L		60	59	60	60	60	59	59	58	58	57	56		
	139	140	140	142	143	144	145	145	146	148	150	L		59	59	59	59	60	59	58	58	58	57	57		
	139	140	141	142	143	144	145	145	147	149	151	L		58	58	59	58	58	57	56	56	57	57	62		
	140	141	142	143	143	144	146	147	148	149	151	L		56	56	58	56	57	55	56	56	56	55	64		
	140	142	142	143	144	146	147	148	149	150	151	L		56	57	58	56	57	56	56	56	56	61	66		
	141	142	143	144	144	146	148	149	150	150	152	L		56	56	57	55	56	55	56	56	62	63	72		
	142	143	144	144	145	147	149	149	150	151	152	L		56	56	57	55	56	56	59	59	65	70	73		
	142	144	144	145	146	148	149	150	151	152	152	L		55	56	53	55	54	55	61	64	70	74	76		
	143	144	145	146	147	148	150	150	152	153	153			55	55	54	55	55	57	66	66	76	80	81		
	144	146	146	146	147	149	150	151	153	154	154			53	54	54	54	57	65	70	74	81	86	86		
	146	148	147	147	147	149	150	151	153	155	156			54	61	57	59	59	67	72	74	83	91	94		

Rozjaśnienia spowodowane szarymi plamami na rysunku reference_image:

Oraz praktycznie niezmieniony stan i poziom jasności w miejscu gdzie na kora_image była całkowita czerń, a na reference_image biel:

Poniżej wklejamy dodatkowo fragment siatki poziomów szarości prezentujący w postaci liczbowej zmianę stopnia jasności pewnego obszaru obu obrazków (prawa strona obrazka, sam środek – dla oka niektóre jego fragmenty raczej na pierwszy rzut ok. nie do rozróżnienia, różnica 5-8,,stopni" szarości):

📙 In	Input Image														1 Output Image											
InBm	nBmp Histograms Grid															ams	Grid									
	19	19	19	20	19	20	20	28	64	109				25	25	25	25	25	25	26	36	85	146			
	19	19	19	19	19	19	20	28	64	110				25	25	25	25	25	23	25	35	88	149			
	19	19	19	19	19	19	20	28	65	112				25	26	26	25	23	23	23	35	88	152			
	19	19	19	19	19	18	19	27	67	114				26	26	26	25	23	23	23	35	89	153			
	19	20	20	19	18	18	18	27	67	116				25	26	26	25	23	23	23	36	90	154			
	20	20	20	19	18	18	18	27	68	117				25	25	26	25	23	25	25	38	90	156			
	19	20	20	19	18	18	18	28	69	118				25	25	26	25	23	25	26	39	91	157			
	19	19	20	19	18	19	19	29	69	119				23	25	25	25	23	25	26	39	93	160			
	19	19	20	19	18	19	20	30	70	120		П		23	23	23	25	23	25	26	39	95	162			
	18	19	19	19	18	19	20	30	71	122		П		23	23	23	25	25	26	26	38	97	165			
	18	18	18	19	18	19	20	30	73	124		П		23	23	23	23	25	26	26	39	99	169			
	18	18	18	19	19	20	20	29	74	126		П		23	23	23	23	25	26	26	39	101	173			
	18	18	18	18	19	20	20	30	76	129				23	23	23	23	25	26	26	40	102	175			
	18	18	18	18	19	20	20	30	77	132				23	23	23	23	25	26	27	40	102	177			
	18	18	18	18	19	20	20	31	78	134				23	23	23	23	25	27	27	40	102	177			
	18	18	18	18	19	20	21	31	78	135				23	23	23	23	23	27	26	40	102	177			
	18	18	18	18	19	21	21	31	78	135				23	23	23	23	23	25	26	40	105	180			
	18	18	18	18	18	21	20	31	78	135				25	25	23	22	23	25	25	40	105	180			
													•													

p.s. w ćwiczeniu tym wykorzystaliśmy zrzuty z zajęć więc nie widać na nich jeszcze naszego logo.